Skip to content


KitOpsDev ModeRelease Notes

KitOps Release v0.2–Introducing Dev Mode and the ability to chain ModelKits

Welcome KitOps v0.2! This update brings two major features for working with LLMs, as well numerous...

Gorkem Ercan

Fine-tune your first large language model (LLM) with LoRA, llama.cpp, and KitOps in 5 easy steps

Getting started with LLMs can be intimidating. In this tutorial we will show you how to fine-tune a... Tagged with beginners, programming, tutorial, machinelearning.

Rajat Raina

I fine-tuned my model on a new programming language. You can do it too! 🚀

I have been using OpenAI ChatGPT-4 for a while now. I don't have a lot of bad stuff to say about... Tagged with webdev, javascript, beginners, programming.

Nevo David

Why enterprise AI projects are moving too slowly

This post lists the challenges with getting an AI/ML project from development into production and offers suggestions on organizational and tooling changes (like KitOps' ModelKits) that can help. Tagged with devops, ai, opensource, aiops.

Brad Micklea
MLOpsKitOpsmachine learningopen source

KitOps: The Bridge Between AI/ML Models and DevOps

Yesterday, Brad Micklea, Jozu CEO and KitOps maintainer, was a guest on the Partially Redacted podcast hosted by Sean Falconer. The 45-minute conversation covered a lot of ground. Specifically, the current state of the KitOps project, where the project is headed, and some of our early ideas for productizing and releasing Jozu, which builds on top of KitOps. In this post I dive a bit deeper into a few of these topics.

Jesse Williams

Strategies for Tagging ModelKits

ModelKits, much like other OCI artifacts, can be identified using tags that are comprehensible to humans. This blog explores various strategies for effectively tagging your ModelKits.

Gorkem Ercan
MLOpsKitOpsmachine learningpodcast

Balancing Innovation and Responsibility in AI/ML Deployment with Jozu's Brad Micklea

Listen to this episode from Partially Redacted: Data Privacy, Security & Compliance on Spotify. In this episode, we dive into the world of MLOps, the engine behind secure and reliable AI/ML deployments. MLOps focuses on the lifecycle of machine learning models, ensuring they are developed and deployed efficiently and responsibly. With the explosion of ML applications, the demand for specialized tools has skyrocketed, highlighting the need for improved observability, auditing, and reproducibility. This shift necessitates an evolution in ML toolchains to address gaps in security, governance, and reliability. Jozu is a platform founded to tackle these very challenges by enhancing the collaboration between AI/ML and application development teams. Jozu aims to provide a comprehensive suite of tools focusing on efficiency throughout the model development and deployment process. This conversation discusses the importance of MLOps, the limitations of current tools, and how Jozu is paving the way for the future of secure and reliable ML deployments.

Brad Micklea
gitDevOpsopen sourcemachine learning

Beyond Git: A New Collaboration Model for AI/ML Development

Git is optimized to work with large numbers of small files, like text files. This alone makes Git impractical for managing such datasets.

Gorkem Ercan
AIDevOpsopen sourcemachine learning

The transitory nature of MLOps: Advocating for DevOps/MLOps coalescence

AI/ML is a wildfire of a trend. It’s being integrated into just about every application you can think... Tagged with ai, devops, opensource, machinelearning.

Jesse Williams
thought leadership

Do data scientists really like Git?

I have a theory: data scientists do not like Git. I think they did not adopt Git because they needed to version control their notebooks. They adopted Git because when they approached the software developers and DevOps engineers for collaboration that is what they were forced to do.

Gorkem Ercan